This course guides learners through the structured development of predictive models using Random Forest techniques in R, specifically applied to employee attrition data. The course is divided into two comprehensive modules. The first module introduces the foundational concepts of classification and Random Forest algorithms, guiding learners to explain, identify, and prepare relevant variables. Learners also perform essential preprocessing tasks to shape the dataset for analysis.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Was Sie lernen werden
Build and tune Random Forest models in R for real-world HR attrition datasets.
Apply preprocessing and variable selection for accurate employee attrition modeling.
Evaluate and validate model performance using metrics and optimization strategies.
Kompetenzen, die Sie erwerben
- Kategorie: People Analytics
- Kategorie: Data Processing
- Kategorie: Workforce Management
- Kategorie: Advanced Analytics
- Kategorie: Process Validation
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the fundamentals of employee attrition prediction using Random Forest algorithms in R. It begins with an overview of the business problem, explores the machine learning methodology behind Random Forest, and establishes a strong conceptual framework. Learners will also examine the structure and significance of the dataset, understand variable types and transformations, and perform essential pre-modeling tasks such as data cleaning and encoding. By the end of this module, learners will be able to prepare data and understand Random Forest fundamentals essential for building predictive models.
Das ist alles enthalten
7 Videos3 Aufgaben
This module focuses on implementing, tuning, and validating Random Forest models for employee attrition prediction. Learners will begin by developing a predictive model using cleaned and preprocessed data. They will then explore techniques to optimize model performance, including parameter tuning and validation methods. Emphasis is placed on understanding how hyperparameters influence model behavior and ensuring robust evaluation using appropriate metrics. By the end of the module, learners will be able to build, fine-tune, and validate a Random Forest model that generalizes well to unseen data.
Das ist alles enthalten
5 Videos3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
Coursera Project Network
- Status: Kostenloser Testzeitraum
LearnQuest
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,